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Abstract
By using straightforward frequency arguments we classify transformations of
probabilities which can be generated by transition from one preparation pro-
cedure (context) to another. There are three classes of transformations corre-
sponding to statistical deviations of different magnitudes: (a) trigonometric;
(b) hyperbolic; (c) hyper-trigonometric. It is shown that not only quantum
preparation procedures can have trigonometric probabilistic behaviour. We
propose generalizations of C-linear space probabilistic calculus to describe
non-quantum (trigonometric and hyperbolic) probabilistic transformations. We
also analyse the superposition principle in this framework.

PACS numbers: 05.30.-d, 03.65.Ta, 03.65.Yz

1. Introduction

We analyse a well known expression for probability of an event in terms of the conditional
probabilities based on another event. This expression often goes by the name Bayes’ formula
and is known not to apply in quantum mechanics when probabilities for incompatible, or
non-commuting, observables are being evaluated, see e.g. [1–3].

In the classical case we have Bayes’ formula:

p(A = ai) = p(C = c1)p(A = ai/C = c1) + p(C = c2)p(A = ai/C = c2) (1)

where A = a1, a2 and C = c1, c2 are two dichotomic random variables. In the quantum case
we have the formula

p(A = ai) = p(C = c1)p(A = ai/C = c1) + p(C = c2)p(A = ai/C = c2)

±2
√
p(C = c1)p(A = ai/C = c1)p(C = c2)p(A = ai/C = c2) cos θ (2)

where θ is some phase.
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The appearance of the interference term in quantum modification of Bayes’ formula has
led to the use of the term ‘quantum probability’ in contradiction to what could be called
‘regular’ or ‘classical’ probability (see e.g. [1–21] for extended discussions on this problem),
but there is only one type of physical probability and it is one that is subject to measurement
via counting and the generation of relative frequencies. It is the relative frequency probability
(of von Mises) that is directly connected with data from experiment. We provide a frequency
probabilistic analysis making a contribution to the understanding of probability and Bayes’
formula within the context of quantum mechanics.

Our analysis begins with the relative frequency definition of the relevant probabilities.
The probability for the eigenvalue of one observable is then expressed in terms of the
conditional probabilities involving the eigenvalues of a second (in general incompatible)
observable. In this way the ‘non-classical’ term in the quantum Bayes formula is shown
as a perturbation due to the difference in preparation procedures of the different states. The
perturbing term is then expressed in terms of a coefficient λ whose absolute value can be
less than or equal to one, or it can be greater than one for each of the eigenvalues of
the observable. This range of values for the coefficient λ then introduces three distinct
types of perturbation which are called trigonometric, hyperbolic and hyper-trigonometric.
Each case is then examined separately. Classical and quantum cases are then special
cases of more general results. It is then shown that in the quantum case it is possible
to reproduce a Hilbert space in which the probabilities are found in the usual way, but
there is a case in which this is not possible; though the space is linear it is not a Hilbert
space. In general it is not a complex linear space. In the case of hyperbolic probabilistic
behaviour we have to use linear representation of probabilities over so-called hyperbolic
numbers.

In fact, our approach to experimental probabilities is nothing other than the well
known contextualist approach. In quantum theory such an approach was strongly supported
by Bohr [11] and Heisenberg [3] (see also [5–21]). Heisenberg [3] already directly
pointed out that quantum interference of probabilistic alternatives, (2), is a consequence
of transition from one context (complex of physical conditions) to another. Bohr
always pointed out that we have to take into account the experimental arrangement to
determine ‘quantum probabilities.’ In this paper we took the important step to justify the
contextualist approach: we derived the ‘quantum probabilistic rule’ in a purely classical
frequency probabilistic framework (see also [22, 23]). In fact, we obtained much more
than planned. We found that possible modifications of Bayes’ formula (induced by
context transitions) are not reduced to the ‘quantum probabilistic rule’ (see the above
discussion).

As already mentioned, it is impossible to realize probabilistic transformations induced by
all possible context transitions in a Hilbert space. We develop the non-Hilbert linear space
probabilistic formalism. The main distinguishing feature of this formalism is the violation
of the superposition principle. There is no more superposition transitivity: combination of
two superpositions need not be again a superposition. The principle of superposition is the
cornerstone of quantum formalism. There is still a large diversity of opinions on this principle.
It may be that our models, in that the principle of superposition is violated, may be useful for
analysis of this principle1. We note that there is a similarity with the quantum formalism based
on the theory of POVM (positive operator-valued measures) (see, e.g., [6, 16–18, 24]) in that
it is possible to consider non-orthogonal expansions of the unit operator.

1 In our models the situation is not like that in models with superselection rules. ‘Probability superselection’ could
not be represented by choosing a linear subspace in the Hilbert space of quantum states. In some sense our selections
can be considered as nonlinear ‘superselections’.
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The results of this paper were presented in the authors’ talks at the international conferences
Foundations of Probability and Physics (Växjö, 2000), Quantum Physics: Reconsideration of
Foundations (Växjö, 2001) and Exploring Quantum Physics (Venice, 2001).

2. Classification of transformation rules for probability distributions for three
preparation procedures

Let E be some preparation procedure (see [5–10, 13]) that produce physical systems having
two properties A and C. These properties are described by dichotomic variables A = a1,
a2 and C = c1, c2. We fix the number of preparation acts, N ≡ NE , so E always produces
ensembles S = SE having N = |S| elements.

Let E1 and E2 be two other preparation procedures. It is assumed that each of these
preparation procedures can be applied to elements of S. By application of Ei to S we produce
a new statistical ensemble2 Si, i = 1, 2. The main feature of the ensemble Si is that C = ci
for its elements (i = 1, 2). For example, Ei can be considered as filters with respect to the
property C : Ei select elements of S such that C = ci (i = 1, 2). Such a filtration justifies the
assumption that the number of elements in Si could be chosen equal to the number of elements,
Ni , in S having the property C = ci (i = 1, 2). So everywhere below

|Si | = Ni i = 1, 2.

The crucial point of our considerations is that in general we could not ‘select’, for example,
elements with the property C = c1 without disturbing the property A. In general the sub-
ensemble

Sij = {s ∈ Si : A = aj }
of the ensemble Si does not coincide with the sub-ensemble

S
(0)
ij = {s ∈ S : C = ci, A = aj }

of the original ensemble S. We set

nij = |S(0)ij | and mij = |Sij |
(the numbers of elements in the sub-ensembles) and

Ni = |{s ∈ S : C = ci}| nj = |{s ∈ S : A = aj }|
(the numbers of elements in S having, respectively, properties C = ci, i = 1, 2 and
A = aj , j = 1, 2). We note that everywhere below the first number, i, in the index pair
ij is related to the property C and the second one, j , to the property A. We shall use the
frequency approach to probability (see, [25] and [19]): the probability is defined as the limit
of relative frequencies when the number of trials N → ∞.

Remark (foundations of probability and physics). As we have already discussed [19], the
conventional probability theory based on Kolmogorov axiomatics [26] is not the best tool to
work with ‘quantum probabilities’. The formal use of an abstract, absolute, probability measure
is the source of many misunderstandings. In particular, the Kolmogorov model is not the best
one for operating with transitions from one context to another. In fact, all probabilities are
conditional probabilities; there is no absolute probability (see [27] for the extended discussion).
We prefer to work with frequency probabilities. Here contexts are described by collectives
(random sequences) that are used to find relative frequencies. However, in this paper we shall
not pay much attention to the mathematical details of the frequency framework (see [19] for

2 In general we need two different ensembles SE to produce two ensembles, S1 and S2.
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the details). In fact, everybody who is familiar with von Mises frequency probability theory
could recognize that in this paper we work with von Mises collectives. These collectives are
produced by different preparation procedures (complexes of physical conditions). It may be
even better to use the term ‘collective’ instead of the term ‘ensemble’ that is used in this paper.
However, we are a little afraid to do this, because there is a rather strong prejudice against von
Mises’ approach (especially from the mathematical side).

We consider relative frequencies:

q
(N)
j ≡ paj (N) = nj

N
p
(N)
i ≡ pci (N) = Ni

N

(for the properties A and C in the ensembles prepared by E);

p
a/c

ij (Ni) ≡ pij (Ni) = mij

Ni

(for the property A = aj in the ensemble prepared by Ei) and the corresponding probabilities:

qj ≡ paj = lim
N→∞

paj (N) pi ≡ pci = lim
N→∞

pci (N) pij ≡ p
a/c

ij = lim
Ni→∞

pij (N).

As in general nij are not equal to mij (even asymptotically N → ∞), we do not have the
conventional formula of total probability. In general

qj = pS(A = aj ) 
= p1p11 + p2p21

= pS(C = c1)pS1(A = a1) + pS(C = c2)pS2(A = a2).

We want to investigate the various forms probabilities qj can take, depending on
perturbations induced by context transitions. In the general case we have

qj (N) = nj

N
= n1j

N
+
n2j

N
= m1j

N
+
m2j

N
+ δ(N)j

= N1

N
.
m1j

N1
+
N2

N
· m2j

N2
+ δ(N)j

= p1(N)p1j (N1) + p2(N)p2j (N2) + δ(N)j

where the perturbation term (which appears due to the transition from S to S1 and S2) has the
form

δ
(N)
j ≡ δj (E, E1, E2, N) = 1

N
[(m1j − n1j ) + (m2j − n2j )].

We remark that there exists the limit

δj = lim
N→∞

δj (N) = qj − (p1p1j + p2p2j ).

Thus in general we have qj = p1p1j + p2p2j + δj , where

δj = lim
N→∞

1

N
[(m1j − n1j ) + (m2j − n2j )].

It is useful to perform normalization by setting

δj = 2
√
p1p1jp2p2jλj j = 1, 2.

The trivial (but important) remark is that there are three possibilities:

(T) |λj | � 1
(H) |λj | > 1

(HT) |λ1| � 1 and |λ2| > 1 or |λ1| > 1 and |λ2| � 1.



Linear representations of probabilistic transformations induced by context transitions 9969

In case (T) we can always represent the coefficient as λj = cos θj , j = 1, 2; in case (H), as
λj = ± cosh θj , j = 1, 2; in case (HT), as λ1 = cos θ1 and λ2 = ± cosh θ2 or vice versa.
Probabilistic behaviours of the types (T), (H) and (HT) will be called trigonometric, hyperbolic
and hyper-trigonometric behaviours, respectively.

We have studied the general case. There are three preparation procedures E, E1 and E2 such
that E1 and E2 are selections with respect to values C = c1 and c2. The general probabilistic
transformation induced by transitions E → Ej , j = 1, 2, has the form

paj = pc1p
a/c

1j + pc2p
a/c

2j ± 2
√
pc1p

a/c

1j p
c
2p

a/c

2j λj (3)

where λj = cos θj or λj = cosh θj , or λ1 = cos θ1 and λ2 = ± cosh θ2 or vice versa. Here
the coefficient λj gives the normalized statistical measure of the perturbations of A due to the
transition E → (E1, E2):

λj = lim
N→∞

λ
(N)
j where λ

(N)
j = 1

2
√
m1jm2j

[n1j −m1j ) + (n2j −m2j )]. (4)

If these perturbations are relatively small, namely |λj | � 1, j = 1, 2, then we observe
T-behaviour; in particular, classical and quantum behaviours. If these perturbations are
relatively large, namely |λj | > 1, j = 1, 2, then we observe H-behaviour. In fact, we can
continuously transfer T-behaviour into H-behaviour, since λj , |λj | = 1, has both T- and H-
representations: λj = ± cos 0 = ± cosh 0. If one of these perturbations, for instance λ1, is
relatively small, namely |λ1| � 1, and another, λ2, is relatively large, namely |λ2| > 1, then
we observe HT-behaviour.

Finally, we show that coefficients λ1 and λ2 are connected by a ‘condition of orthogonality’
(in the quantum formalism this is the real condition of orthogonality in the complex Hilbert
space). We note that the matrix of probabilities P = (pij ) is always a stochastic matrix:

p11 + p12 = 1 and p21 + p22 = 1 (5)

(because pi1 + pi2 = pSi (A = a1) + pSi (A = a2) = 1). Thus we have

1 = pa1 + pa2 = pc1p
a/c

11 + pc2p
a/c

21 + pc1p
a/c

12 + pc2p
a/c

22

+ 2
√
pc1p

a/c

11 p
c
2p

a/c

22 λ1 + 2
√
pc1p

a/c

12 p
c
2p

a/c

22 λ2.

To simplify considerations, we assume everywhere that all probabilities are strictly positive.
This implies √

p
a/c

11 p
a/c

21 λ1 +
√
p
a/c

12 p
a/c

22 λ2 = 0. (6)

We set

K =
√√√√p

a/c

12 p
a/c

22

p
a/c

11 p
a/c

21

.

We obtain

λ1 = −Kλ2.

We observe that probabilities pcj are not involved in the condition of orthogonality (6). In
particular, in the T-case we always have

cos θ1 = −K cos θ2 (7)

in the H-case we have

cosh θ1 = K cosh θ2 (8)
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(here λ1 = ± cosh θ1 and λ2 = ∓ cosh θ2).
In the HT-case we have

cos θ1 = ±K cosh θ2 or cosh θ1 = ±K cos θ2. (9)

Finally, we remark that all the above considerations can be easily generalized to non-
dichotomic variables: A = a1, . . . , aM and C = c1, . . . , cM .

In this case the probability pai can always be represented as

pai =
M∑
j=1

pcjp
a/c

ji + 2
∑
k<l

√
pckp

b
l p

a/c

ki p
a/c

li λ
(i)
kl (10)

where the coefficients λ(i)kl = δ
(i)
kl

2
√

pckp
c
l p

a/c

ki p
a/c

li

and δ(i)kl = 1
M−1

[
pck

(
pai − p

a/c

ki

)
+ pcl

(
pai − p

a/c

li

)]
.

Coefficients {λ(i)kl } are normalized statistical deviations that arise due to the transition from the
context determined by E to contexts Ej .

To simplify analysis, we shall consider only dichotomic variables in the following sections.

3. Trigonometric probabilistic behaviour: classical, quantum and
non-classical/quantum physics

In this section we consider probabilistic transformations for preparation procedures that
produce relatively small statistical deviations:

|λj | � 1 j = 1, 2.

3.1. Classical probabilistic behaviour

Suppose that we can construct statistically ‘perfect’ preparation procedures E1, E2 : selections
of elements of the ensemble S with respect to values C = c1 and c2 produce statistically
negligible changes of A. We set

�ij (N) = nij −mij .

Here nij is the number of elements of S having C = ci and A = aj andmij is the number
of elements of Si having A = aj . The classical probabilistic behaviour is characterized by the
condition

lim
N→∞

�ij (N)

N
= 0 for all i, j.

Here both λj = 0 and we have conventional rule (1).

3.2. Quantum probabilistic behaviour

Let us consider preparations which induce symmetric statistical deviations:

|λ1| = |λ2|. (11)

Thus the coefficientK is equal to unity, so p12p22 = p11p21. In the two-dimensional case
this condition is equivalent to the well known condition of double stochasticity:

p11 + p21 = 1 p12 + p22 = 1. (12)

Thus pS1(A = a1) + pS2(A = a1) = 1 and pS1(A = a2) + pS2(A = a2) = 1. These are
‘conservation laws’ for the A in the process of splitting of the ensemble S into ensembles S1
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and S2. We also remark that (7) implies that cos θ1 = − cos θ2, so θ2 = θ1 + π (mod 2π).
Thus we have the probabilistic transformations:

q1(≡ pa1) = p1p11 + p2p21 + 2
√
p1p11p2p21 cos θ (13)

q2(≡ pa2) = p1p12 + p2p22 − 2
√
p1p12p2p22 cos θ. (14)

This is the well known quantum probabilistic transformation. We now find complex
representations of these probabilities that would linearize transformations (13) and (14). We
use the well known formula:

A + B ± 2
√
AB cos θ = |

√
A±

√
Beiθ |2. (15)

Thus

q1 = |√p1
√
p11 +

√
p2

√
p21eiθ1 |2 q2 = |√p1

√
p21 +

√
p2

√
p22eiθ2 |2

(in the quantum case θ1 = θ2 + π). These formulae can also be derived by C-linear space
computations. We represent the preparation procedure E by a vector ϕ in the two-dimensional
complex Hilbert space:

ϕ = √
p1ϕ1 +

√
p2eiθϕ2

where {ϕ1, ϕ2} is an orthonormal basis corresponding to the physical observable C (the
condition p1 + p2 = 1 implies that ‖ϕ‖2 = 1). Let ψ1, ψ2 be an orthonormal basis
corresponding to the physical observable A. We have

ϕ1 = √
p11ψ1 + eiγ1

√
p12ψ2 ϕ2 = √

p21ψ1 + eiγ2
√
p22ψ2.

We remark that orthogonality of ϕ1 and ϕ2 is, in fact, equivalent to the condition of double
stochasticity for P = (pij ) and the relation γ2 = γ1 + π (mod 2π). By expanding ϕ with
respect to the basis {ψ1, ψ1} we obtain

ϕ = d1ψ1 + d2ψ2

where

d1 = √
p1

√
p11 + eiθ√p2p21 d2 = eiγ1

√
p1

√
p12 + ei(γ2+θ)√p2p22. (16)

By using the relation γ2 = γ1 +π we reproduce the quantum probabilistic rule (13), (14).
We note that our considerations have demonstrated that the main distinguishing feature of

quantum formalism is not the presence of the cos θ -factor in the ‘quantum transformation of
probabilities’, but the double stochasticity of the matrix P = (p

a/c

ij ) of transition probabilities
and the relation

γ2 = γ1 + π (17)

between phases in the expansions of ϕ1 and ϕ2 with respect to the basis {ψ1, ψ2}.
The ‘double-stochasticity conservation laws’, (12), and the ‘phase conservation law’, (17),

imply the unitarity of the transformation U connecting {ϕ1, ϕ2} and {ψ1, ψ2}. In fact, this is
the root of the superposition principle (see the next subsection for the details).

Finally, we remark that there is a crucial difference between classical physical behaviour
(λ1 = λ2 = 0) and quantum decoherence (λ1 = λ2 = 0). In the first case coefficients λj = 0,
because statistical deviations are negligibly small. In the second case coefficients λj = 0,
because statistical deviations compensate each other (j = 1, 2):

�1j

N
≈ −�2j

N
N → ∞.
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3.3. Non-classical/quantum trigonometric probability behaviour

Here the matrix P = (pij ) of transition probabilities need not be double stochastic. We can
find the probability distribution qj = paj = pS(A = aj ), j = 1, 2, by using the following
transformation of probabilities:

qj = p1p1j + p2p2j + 2
√
p1p1jp2p2j cos θj (18)

where cos θ1 = −K cos θ2,K =
√
p12p22

p11p21
. In general such a probabilistic transformation

(‘interference’ between preparation procedures E1 and E2) could not be described by standard
quantum formalism.

Example 3.1. Let p1 = p2 = 1
2 (symmetric distribution of C in S; for example, the two-slit

experiment with symmetric location of slits with respect to the source of particles) and let
p11 = p12 = 1

2 (symmetric distribution of A in S1) and p21 = 1
3 , p22 = 2

3 (asymmetric
distribution of A in S2). Thus the matrix P is not double stochastic.

The law of conservation of the A is violated in the process of the transition S → (S1, S2).
The measure of this violation is given by the coefficient K . Here K = √

2. Phases θ1 and
θ2 must be chosen in such a way that cos θ1 = −√

2 cos θ2. For example, we can consider
preparations such that θ1 = 3π

4 and θ2 = π
3 . In this case we have

pa1 = 5

12
+

cos 3π
4√

6
pa2 = 7

12
+

cos π
3√

3
.

This probabilistic transformation could not be obtained in standard ‘quantum linear
calculus’. We shall see that it could be obtained by non-unitary generalization of ‘quantum
linear calculus’.

4. Hyperbolic probabilistic behaviour

In this section we consider examples of H- and HT-behaviour. We remark that H-behaviour
can be exhibited by preparations having double-stochastic transition matrices.

Example 4.1. Let p1 = α and p2 = 1 − α (0 < α < 1) and let pij = 1/2, i, j = 1, 2. Here
K = 1 (the transition matrix is double stochastic) and, hence, cosh θ2 = cosh θ1. We have

q1 = 1
2 +

√
α(1 − α) cosh θ

q2 = 1
2 −

√
α(1 − α) cosh θ.

In the opposite to the T-case the phase θ cannot take arbitrary values. There is a relation
between θ and α that provides that q1, q2 have the meaning of probabilities. We set

e(α) = 1

2
√
α(1 − α)

.

We remark that e(α) � 1 for all 0 < α < 1. The hyperbolic phase θ can be chosen as
θ ∈ [0, θmax], where θmax = arccosh e(α). For example, let α = 1

4 (1 − α = 3/4). Thus
e(x) = 2√

3
. Here we could observe hyperbolic interference for angles 0 � θ � arccosh 2√

3
.

We remark that if p1 = p2 = 1
2 , then e(α) = 1 and the hyperbolic interference coincides

with the ordinary interference cos 0 = cosh 0 = 1. In general the symmetric distribution
p1 = p2 = 1/2 can produce non-trivial hyperbolic interference. We have for a general
double-stochastic matrix p

qj = 1
2 (p1j + p2j ) +

√
p1jp2jλj = 1

2 +
√
p1jp2jλj = 1

2 +
√
α(1 − α)λj

where we set α = p11 = p22 and 1 − α = p12 = p21. If θ ∈ [0, θmax], θmax = arccosh e(α),
then λj = ± cosh θ, θ 
= 0.
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We remark that the total symmetry (in S as well as S1, S2), namely p1 = p2 = pij = 1/2,
produces the trivial H-interference (that coincides with the T-interference), so hyperbolic
interference might be observed only for preparation procedures with asymmetric probability
distributions for contexts.

Remark (negative probabilities). If we do not pay attention to the range of the H-phase
parameter θ we could obtain negative probabilities and probabilities >1. It must be noted
that such ‘probabilities’ appear with intriguing regularity in various extensions of quantum
formalism ( [28–30], see also [19] for the details). It may be that ‘quantum negative
probabilities’ have the same origin as ‘negative H-probabilities,’ namely the use of non-physical
values of some parameters (see [19] for the details).

Of course, our considerations induce the following natural question: ‘is it possible to
construct a linear space representation for the H-probabilistic transformations?’ We shall
study this question in section 6.

Finally, we consider an example of mixed HT-behaviour.

Example 4.2. Let p1 = p2 = 1
2 and let p11 = 4

5 , p12 = 1
5 , p21 = 4

5 , p22 = 1
5 . We have

K = 1
4 ; so λ2 = −4λ1.

We have q1 = 4
5 (1 + λ1), q2 = 1

5 (1 − 4λ1). If −1 � λ1 � 1
4 , then q1 and q2 have the

meaning of probabilities. For example, let λ1 = −1
2 and λ2 = 2. Then q1 = 2

5 , q2 = 3
5 . Thus

q1 = 4
5 + 4

5 cos 2
3π q2 = 1

5 + 1
5 cosh

(
ln(2 +

√
3)

)
.

We remark that mixed HT-behaviour cannot be produced on the basis of a double-stochastic
matrix P = (pij ).

Finally, we note that the H-phase has a symmetry, θ → −θ , that is an analogue of the
symmetry θ → θ + 2π for the T-phase. If λ = cosh θ , then θ can be chosen as

θ = ln
(
λ +

√
λ2 − 1

)
or θ = ln

(
λ−

√
λ2 − 1

)
.

5. Complex linear space representation of the general trigonometric probabilistic rule

We shall study the possibility of representing a general probabilistic transformation (18) as a
linear transformation in a complex linear space. As in general the transition probability matrix
P = (pij ) is not double stochastic, we could not expect that it would be possible to work with
orthonormal bases in a complex Hilbert space. It seems that the inner product structure is not
useful in the general case.

LetE be a two-dimensional linear space over the field of complex numbers C. The choice
of C as the basic number field has trivial explanation. Formula (15) gives the possibility of
representing the T-probabilistic transformation in form (16), which is reduced to the transition
from one basis to another. It is impossible to linearize a quantum probabilistic transformation
by using real numbers, but it is possible to do this by using complex numbers. These arguments
were already evident in our analysis of quantum theory. We now observe that they can be used
in a more general situation.

Vectors ofE are said to be quantum states. At the moment there is no Hilbert structure on
E. There is nothing similar to the standard normalization condition for quantum states. We
represent the ensemble S (the preparation procedure E) by a vector ϕ in E and the ensembles
S1 and S2 (the preparation procedures E1 and E2) by vectors ϕ1 and ϕ2.
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It is supposed that the preparation procedures E1 and E2 determine some dichotomic
physical variable, C = c1, c2. In the linear space calculus this assumption has the following
counterpart: vectors {ϕ1, ϕ2} are linearly independent in E.

Splitting S into S1 and S2 (due to the preparation procedures E1 and E2) is represented as
expanding the vector ϕ with respect to a basis {ϕ1, ϕ2} in E. We can always expand the vector
φ with respect to the basis:

ϕ = α1ϕ1 + α2ϕ2

where α1 and α2 ∈ C. As in the ordinary quantum formalism the probabilities pci = PS (C =
ci) are represented as pci = |αi |2 (generalization of Born’s postulate). There is therefore a
constraint for vectors ϕ and ϕ1, ϕ2:

|α1|2 + |α2|2 = 1. (19)

In such a case the quantum state ϕ is said to be C-decomposable.
We now consider the measurement of A for ensembles Si (prepared by Ei ). We consider

such a measurement that a second measurement of A, performed immediately after the first
one, will yield the same value of the observable. In quantum theory such measurements are
often called ‘measurements of the first kind’. Thus such A-measurement can be interpreted as
a preparation procedure.

To be more precise, we consider two preparation procedures Ea1 and Ea2 corresponding to
selections of physical systems on the basis of values A = a1 and A = a2. The C-preparation
procedures E1 and E2 we now denote by the symbols Ec1 and Ec2 , respectively. Eaj selects physical
systems such thatA = aj , j = 1, 2. We remark that in general these selections may change the
probability distribution ofC. By applying Eaj to the ensemble Sci ≡ Si (which was produced by
the application of Eci to an ensemble S produced by E) we obtain an ensemble Scaij , i, j = 1, 2.
In the same way we split the ensembleS (with the aid of Ea1 and Ea2 ) into ensemblesSaj , j = 1, 2.
Ensembles Saj , j = 1, 2, are represented by vectorsψj in theE. We assume that they also form
a basis in E (this is a consequence of the fact that preparation procedures Ea1 and Ea2 determine
the dichotomic physical variable A). Thus splitting S → (Sa1 , S

a
2 ) can be represented by the

expansion

ϕ = β1ψ1 + β2ψ2

where βj ∈ C. Here probabilities paj = PS(A = aj ) = |βj |2, so

|β1|2 + |β2|2 = 1. (20)

Thus ϕ is A-decomposable.
In the general case we have to represent ensembles Scaij , i, j = 1, 2, by four different

vectors ψij . In general we cannot assume that these vectors belong to the same two-
dimensional space E. The study of this general situation is too complicated. We restrict
ourselves to the special case (which is the most interesting for applications). Let ψ11 = ψ1

and ψ21 = ψ1, ψ21 = ψ2 and ψ22 = ψ2. It was assumed that ψ1 and ψ2 are independent
vectors.

We should like to predict the probabilities paj on the basis of the transition from the basis
{ϕ1, ϕ2} to the basis {ψ1, ψ2}. Let U = (βij ) be the transition matrix (the only restriction to
U is its invertibility). Here each vector ϕi is A-decomposable3. Thus

|βi1|2 + |βi2|2 = 1 i = 1, 2. (21)
3 In general there is no composition (or it would be better to say decomposition) transitivity. For example, it may
be that the state ϕ is C-decomposable and each state ϕi is A-decomposable, but ϕ is not A-decomposable. We
suppose decomposability of all states under the consideration for physical reasons: the possibility to perform A and
C measurements for elements of S. The violation of composition transitivity corresponds to the following situation:
we can perform C-measurement on S and A-measurements on Sci , but we could not perform A-measurement on S.
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We have

β1 = α1β11 + α2β21 β2 = α1β12 + α2β22. (22)

Coefficients αj , βij are not independent. They satisfy constraint (20). Simple computations
give us

α1ᾱ2(β11β̄21 + β12β̄22) + ᾱ1α2(β̄11β21 + β̄12β22) = 0. (23)

One of the solutions of this equation is given by

β11β̄21 + β12β̄22 = 0. (24)

This is the condition of unitarity of the transition matrix U = (βij ). This solution gives the
ordinary quantum formalism. In this formalism it is useful to introduce the inner product

〈z,w〉 = z1w̄1 + z2w̄2

and rewrite the above equation as the condition of orthogonality of vectors ϕ1 and ϕ2:
〈ϕ1, ϕ2〉 = 0. However, equation (23) has other solutions which are not related to standard
quantum formalism. These solutions give the complex linear space representation for the
trigonometric probabilistic rule in the non-classical/quantum case. We set

αi = √
pie

iξi βij = √
pije

iγij

where p1 + p2 = 1, p11 + p12 = 1, p21 + p22 = 1 and ξ1, γij are arbitrary phases. Thus the
transition from one basis to another has the form

ϕ1 = √
p11eγ11ψ1 +

√
p12eγ12ψ2 ϕ2 = √

p21eγ21ψ1 +
√
p22eγ22ψ2. (25)

In these notations equation (23) has the form

cos (η + γ1)
√
p11p21 + cos (η + γ2)

√
p12p22 = 0 (26)

where η = ξ1 − ξ2, γ1 = γ11 − γ21, γ2 = γ12 − γ22.
We set θ1 = η + γ1 and θ2 = η + γ2. Equation (26) coincides with equation (6) in the

T-case. Thus all possible probabilistic T-transformations can be represented in the complex
linear space. A rather surprising fact is that equation (26) has a new (non-quantum solution)
even for a double-stochastic matrix of transition probabilities.

Let P be a double-stochastic matrix. Equation (26) has the form

cos (η + γ1) + cos (η + γ2) = 0.

Thus

cos
(2η + γ1 + γ2)

2
= 0 or cos

(γ1 − γ2)

2
= 0.

There is a crucial difference between these equations. The first equation ‘remembers’ the
state ϕ, splitting ϕ into {ϕ1, ϕ2} (or S into S1 and S2). This memory is given by the phase
shift η. The second equation does not contain any memory term. In fact, this is the standard
quantum mechanical equation: γ1 − γ2 = π (mod 2π).

Thus we obtain a new (non-quantum) solution even for a double-stochastic matrix
P = (pij ):

2η + γ1 + γ2 = π (mod 2π).

In this case transformation (25) also reproduces the quantum probabilistic rule (13), (14):
qj = p1p1j + p2p2j ± 2

√
p1p1jp2p2j cos θ . However, (25) is not unitary:

β11β̄21 + β12β̄22 = 1 − e−2iη 
= 0 η 
= 0.
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6. Linear space representation of the hyperbolic probabilistic rule

We want to find a kind of linear space calculus for the H-probabilistic transformation. It seems
that it would be impossible to do this in a C-linear space. We propose to use a hyperbolic
algebra G (see [31]). This is a two-dimensional real algebra with basis e0 = 1 and e1 = j,
where j2 = 1.

Elements of G have the form z = x+jy, x, y ∈ R. We have z1 +z2 = (x1 +x2)+j(y1 +y2)

and z1z2 = (x1x2 + y1y2) + j(x1y2 + x2y1). This algebra is commutative. We introduce an
involution in G by setting z̄ = x − jy. We set

|z|2 = zz̄ = x2 − y2.

We remark that |z| =
√
x2 − y2 is not well defined for an arbitrary z ∈ G. We

set G+ = {z ∈ G : |z|2 � 0}. We remark that G+ is the multiplicative semigroup
z1, z2 ∈ G+ → z = z1z2 ∈ G+. This is a consequence of the equality

|z1z2|2 = |z1|2|z2|2.
Thus, for z1, z2 ∈ G+, we have |z1z2| = |z1||z2|. We introduce

ejθ = cosh θ + j sinh θ θ ∈ R.

We remark that

ejθ1 ejθ2 = ej(θ1+θ2) ejθ = e−jθ |ejθ |2 = cosh2 θ − sinh2 θ = 1.

Hence, z = ±ejθ always belongs to G+. We also have

cosh θ = ejθ + e−jθ

2
sinh θ = ejθ − e−jθ

2j
.

We set G∗
+ = {z ∈ G+ : |z|2 > 0}. Let z ∈ G∗

+. We have

z = |z|
(
x

|z| + j
y

|z|
)

= sign x|z|
(
x sign x

|z| + j
y sign x

|z|
)
.

As x2

|z|2 − y2

|z|2 = 1, we can represent x sign x = cosh θ and y sign x = sinh θ, where the
phase θ is unequally defined. We can represent each z ∈ G∗

+ as

z = sign x |z| ejθ .

By using this representation we can easily prove that G∗
+ is the multiplicative group. Here

1
z

= signx
|z| e−jθ . The unit circle in G is defined as S1 = {z ∈ G : |z|2 = 1} = {z = ±ejθ , θ ∈

(−∞,+∞)}. It is a multiplicative subgroup of G∗
+.

Hyperbolic Hilbert space is G-linear space (module) E with a G-scalar product: a map
(·, ·) : E × E → G that is:

(1) linear with respect to the first argument,

(az + bw, u) = a(z, u) + b(w, u) a, b ∈ G z,w, u ∈ E;
(2) symmetric, (z, u) = (u, z);
(3) non-degenerated, (z, u) = 0 for all u ∈ E iff z = 0.

We note that (1) and (2) imply that

(u, az + bw) = ā(u, z) + b̄(u,w).

Remark. If we consider E as just a R-linear space, then (·, ·) is a (rather special) bilinear
form which is not positively defined. In particular, in the two-dimensional case we have the
signature (+,−,+,−).
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We shall represent the H-probabilistic transformation in the two-dimensional G-linear
space (module) E. From the beginning we do not consider any G-Hilbert structure on E.
Such a structure will appear automatically in the representation of one particular class of H-
probabilistic transformations, H-quantum formalism. In the same way as in the previous section
we introduce quantum states ϕ, {ϕ1, ϕ2}, {ψ1, ψ2} corresponding to preparation procedures
(statistical ensembles). By definition a quantum state is a vector belonging to a G-linear space
(no normalization!).

It is supposed that {ϕ1, ϕ2} and {ψ1, ψ2} are bases in the G-linear space E.
It is supposed that the state ϕ is C and A-decomposable and the states ϕi are A-

decomposable. Thus

ϕ = α1ϕ1 + α2ϕ2 |α1|2 + |α2|2 = 1 |αj |2 � 0

and

ϕ1 = β11ψ1 + β12ψ2 ϕ2 = β21ψ1 + β22ψ2

where vectors of coefficients β(1) = (β11, β12) and β(2) = (β21, β22) are such that

|β11|2 + |β12|2 = 1|β21|2 + |β22|2 = 1 and |βij |2 � 0.

Thus

ϕ = β1ψ1 + β2ψ2

where the coefficients β1, β2 are given by (22). There is no formal difference between
linear space transformations over C and G. However, the assumption that the state ϕ is
A-decomposable implies that the G-linear space calculations have a physical meaning iff the
vector β = (β1, β2) is such that

|β1|2 = |α1β11 + α2β21|2 � 0 |β2|2 = |α1β12 + α2β22|2 � 0 (27)

and

|β1|2 + |β2|2 = 1. (28)

The latter equation coincides with equation (23) (with the only difference that all numbers
belong to G instead of C).

As we have already discussed in the T-case, in general there is no composition (in fact,
decomposition) transitivity. In general the C-decomposability of ϕ and A-decomposability of
ϕi need not imply that ϕ is alsoA-decomposable. Our assumptions on composition transitivity
are based on the physical context of our considerations.

As in the T -case, (23) has the solution given by equation (24) (the only difference is that
now all coefficients belong to the hyperbolic algebra). This is the condition of orthogonality of
vectors ϕ1 and ϕ2 with respect to the G-linear product: 〈z,w〉 = z1w̄1 + z2w̄2. So the matrix
U = (βij ) is a G-unitary matrix, namely

〈β(i), β(j)〉 = δij . (29)

We now study the general case. Here theU need not be a unitary matrix. We consider only
vectors with coefficients belonging to G∗

+. We set αi = ±√
piejξi , βij = ±√

pijejγij , i, j =
1, 2. Condition (28) is equivalent to the condition

√
p12p22 cosh θ2 + σ

√
p11p21 cosh θ2 = 0

where σ = �ij sign βij . This equation has a solution, namely phases θ1 and θ2, iff

σ = −1. (30)

Thus the transition matrix U = (βij ) must always satisfy (30).
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Let us turn back to the case in which U is a G-unitary matrix. We shall call such a model
hyperbolic quantum formalism. The orthogonality relation implies

0 = (β(1), β(2)) = sign β11 sign β21
√
p11p21ej(γ11−γ21) + sign β12 sign β22

√
p12p22ej(γ12−γ22)

or

1 + σKej(γ1−γ2) = 0

where K = √
p12p22/

√
p11p21 and γ1 = γ12 − γ22, γ2 = γ11 − γ21. Thus sinh (γ1 − γ2) = 0

and

γ1 = γ2 (31)

(we recall that in the standard quantum formalism we have γ1 = γ2 + π (mod 2π)). We also
have

1 + σK cosh (γ1 − γ2) = 0.

Thus σ = −1 and K = 1. The sign condition (30) is therefore always satisfied for a
unitary matrix U = (βij ). The equality K = 1 is equivalent to double stochasticity of the
transition matrix of probabilities P = (pij = |βij |2). Therefore the matrix U = (βij ) is a
G-unitary matrix iff the corresponding matrix of probabilitiesP = (pij ) is a double-stochastic
matrix, σ = −1, and hyperbolic phases satisfy (31).

The H-quantum formalism (special calculus in a G-linear space) represents probabilistic
transformations

q1 = p1p11 + p2p21 ± 2
√
p1p2p11p21 cosh θ

q2 = p1p12 + p2p22 ∓ 2
√
p1p2p12p22 cosh θ

where θ = γ11 − γ21 = γ12 − γ22.
The situation is similar to the ordinary quantum formalism. However, there is an important

difference between these formalisms. In the T-quantum formalism the condition of C-
unitarity of U = (βij ) was also sufficient to obtain physically meaningful transformation of
probabilities: all possible phases θ give meaningful probabilistic transformation for the fixed
C-unitary matrix U = (βij ). This is not so in the H-quantum formalism. The G-unitarity
of U = βij is not sufficient to obtain physically meaningful probabilities for all H-phases
θ . Besides condition (28), we also have condition (27), which provides non-negativity of
probabilities qj = paj = |βj |2.

We set t = p11 = p22 (so p12 = p21 = 1 − t), 0 < t < 1 (we recall that P = (pij ) is a
double-stochastic matrix). We also set p1 = s, so p2 = 1 − s, 0 < s < 1. Let us consider the
case in which sign β11 sign β21 = −1. Hence sign β12 sign β22 = 1. Here

q1 = st + (1 − s)(1 − t)− 2
√
s(1 − s)t (1 − t) cosh θ

q2 = s(1 − t) + (1 − s)t + 2
√
s(1 − s)t (1 − t) cosh θ.

Thus

cosh θ � st + (1 − s)(1 − t)

2
√
s(1 − s)t (1 − t)

= e(s, t).

Thus physical H-behaviour is possible only for probabilities s, t such that e(s, t) � 1 (in
the case of the equality H- and T-behaviours coincide).

We note that there is no analogue of the superposition principle in the H-quantum
formalism. G-unitary transformations preserve normalization condition (28), but they do
not preserve positivity conditions (27).
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We now turn back to the general case in which the P need not be double stochastic.
We consider again equation (28), which is equivalent to (23) (with coefficients belonging to
hyperbolic algebra). We have already studied the special class of solutions of equation (23)
given by (24). These solutions are given by G-unitary matrices. We now consider the general
equation:

σK cosh (η + γ2) + cosh (η + γ1) = 0. (32)

As σ = −1, we finally obtain the equation

K cosh θ2 = − cosh θ1

(compare to (7)).The presence of the H-phase η = ξ1 − ξ2 plays the role of memory in the
preparation procedure E (which produced an ensemble S represented by the state ϕ).

We remark that equation (32) has following two solutions for K = 1 (double-stochastic
matrix):

cosh(η + γ2) = cosh(η + γ1) → η + γ2 = η + γ1 or η + γ2 = −η − γ1.

In the first case we have the H-quantum solution, γ1 = γ2, and in the second case we have
a new solution, 2η + γ2 + γ1 = 0, that corresponds to the non-unitary transition matrix U .

7. Conclusions

Our frequency analysis of probabilities related to transitions from one experimental
arrangement (context, complex of physical conditions) to another showed the following.

(1) The ‘quantum rule’ for interference of probabilistic alternatives can be obtained in a purely
contextualist approach; in particular, without applying wave arguments.

(2) Both ‘quantum’ and ‘classical’ probabilities can be interpreted as frequency probabilities.
Specific ‘quantum behaviour’ of probabilities in experiments with quantum particles is
related to the specific relation between elementary particles and experimental arrangement.
There in the ‘quantum world’ transition from one context to another produces statistical
perturbations that change the classical Bayes formula (by the additive interference term).
In the ‘classical world’ such perturbations are negligibly small statistically.

(3) Transformations of probabilities corresponding to context transitions can be classified
according to the magnitudes of statistical perturbations: trigonometric, hyperbolic or
hyper-trigonometric. In particular, contextual modifications of the classical Bayes formula
are not reduced to a ‘quantum rule’ for interference of probabilistic alternatives. There
exists non-classical/quantum trigonometric interference of probabilistic alternatives as
well as hyperbolic interference.

(4) The main distinguishing feature of ‘quantum probabilistic transformations’ is not the
appearance of the cos θ -interference term, but the double stochasticity of the matrix of
transition probabilities.

(5) Starting with the trigonometric transformation of probabilities, we obtain (with the aid
of the cos-theorem) a complex amplitude representation of contextual probabilities. This
gives the possibility of constructing a complex linear space representation of contextual
probabilistic calculus. In general, we could not represent a trigonometric probabilistic
transformation in a complex Hilbert space. This is possible only for double-stochastic
matrices of transition probabilities (that corresponds to unitary transformations of a Hilbert
space).

(6) One of the special features of general C-linear representation of contextual probabilities
is the violation of the superposition principle. It seems that this fundamental principle is
a consequence of double stochasticity.
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(7) Hyperbolic probabilistic transformations can be represented as linear transformations in
modules over the system (commutative algebra) G of hyperbolic numbers.

(8) One of the special features of general G-linear representation of contextual probabilities
is the violation of the superposition principle. In this case even double stochasticity of the
matrix of transition probability (G-unitarity of the corresponding G-linear transformation)
does not imply the superposition principle.

(9) Trigonometric transformations correspond to context transitions inducing relatively small
statistical perturbations, hyperbolic relatively large.

(10) In principle, non-classical/quantum probabilistic behaviour (trigonometric as well as
hyperbolic) could be simulated numerically (see [32]).

Finally, we make a remark on the contextualist viewpoint of superselection rules.
Superselection rules are closely related to the superposition principle. With a superselection
rule unitarity (double stochasticity of the matrix of transition probabilities) or linear
combinations do not imply coherent superposition. Superselection rules also are important
since they are relevant to macroscopic quantum systems [33, 34].

I think that superselection rules give restrictions on physical realization of some
preparation procedures, namely filtration (selection) procedures that give a possibility of
transforming an ensemble of physical systems prepared under one fixed complex of conditions
S into an ensemble of physical systems prepared under some special complex of physical
conditions S ′. There exist complexes S and S ′ such that it is impossible to create the
corresponding transformation procedure. However, I think (and it may be that I am wrong)
that superselection rules could not be analysed in a general probabilistic framework. Each
rule is closely connected to some fixed class of physical systems under consideration. If we
represent in the same linear (in particular, Hilbert) space contextual probabilities for distinct
classes of physical systems, then we shall obtain distinct classes of contexts that could not be
transformed into each other.
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